A note on circuit lower bounds from derandomization
نویسندگان
چکیده
We present an alternate proof of the result by Kabanets and Impagliazzo that derandomizing polynomial identity testing implies circuit lower bounds. Our proof is simpler, scales better, and yields a somewhat stronger result than the original argument.
منابع مشابه
Tighter Connections between Derandomization and Circuit Lower Bounds
We tighten the connections between circuit lower bounds and derandomization for each of the following three types of derandomization: general derandomization of promise-BPP (connected to Boolean circuits), derandomization of Polynomial Identity Testing (PIT) over fixed finite fields (connected to arithmetic circuit lower bounds over the same field), and derandomization of PIT over the integers ...
متن کامل18.405J S16 Lecture 22: Derandomization Implies Circuit Lower Bounds
Q: Why are we using circuit lower bounds here, as opposed to a claim such as E ̸⊆ P for example? A: The proof of the Nisan-Wigderson pseudorandom generator relies on nonuniformity, by showing that distinguishing a pseudorandom generator implies a circuit for solving a hard problem – this reduction involves hardwiring advice into a circuit in order to solve the hard problem. A contradiction requi...
متن کاملAlgorithms versus Circuit Lower Bounds
Different techniques have been used to prove several transference theorems of the form “nontrivial algorithms for a circuit class C yield circuit lower bounds against C”. In this survey we revisit many of these results. We discuss how circuit lower bounds can be obtained from derandomization, compression, learning, and satisfiability algorithms. We also cover the connection between circuit lowe...
متن کاملUniform Derandomization from Pathetic Lower Bounds
The notion of probabilistic computation dates back at least to Turing, who also wrestled with the practical problems of how to implement probabilistic algorithms on machines with, at best, very limited access to randomness. A more recent line of research, known as derandomization, studies the extent to which randomness is superfluous. A recurring theme in the literature on derandomization is th...
متن کاملOn Circuit Lower Bounds from Derandomization
We present an alternate proof of the result by Kabanets and Impagliazzo (2004) that derandomizing polynomial identity testing implies circuit lower bounds. Our proof is simpler, scales better, and yields a somewhat stronger result than the original argument. ACM Classification: F.1.2, F.1.3 AMS Classification: 68Q10, 68Q15, 68Q17
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 17 شماره
صفحات -
تاریخ انتشار 2010